

Spec Driven Development
	Spec Driven Development
	Copyright
	Preface
	Part 1: Foundation
	The Fifth Generation	The Abstraction Ladder
	The Fifth Generation Shift
	The Current Mess
	Specification as Artifact
	What This Means for You

 	
 Cover

 	
 Table of Contents

Spec Driven Development

Spec Driven Development

AI Native Software Engineering

Kevin Ryan

Move beyond ad-hoc prompting to structured workflows where the spec is the source of truth and code follows.

Copyright

© 2026 Kevin Ryan

This work is licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).

You are free to share this material with attribution. You may not use it commercially or create derivative works.

Spec Driven Development: Code is a Side Effect

First edition, 2026

https://creativecommons.org/licenses/by-nc-nd/4.0/

Preface

This book exists because I got tired of watching skilled developers struggle with AI coding tools.

Not because the tools are bad—they’re remarkable. But because we’re using them wrong. We prompt, we iterate, we fix, we prompt again. We call it “vibe coding” and laugh about it. Meanwhile, the code drifts from what we actually wanted, and we spend more time wrangling the AI than building software.

There’s a better way.

Specification Driven Development inverts the relationship between humans and AI. Instead of prompting and hoping, you write specifications. Instead of fixing generated code, you refine specifications until the code emerges correctly. The specification becomes the artifact. Code becomes a side effect.

This isn’t theory. It’s a methodology I’ve used on real projects, with real teams, shipping real software. It works.

This book will teach you how.

Kevin Ryan January 2026

Part 1: Foundation

Before you can write specifications that generate code, you need to understand why this approach works—and why the way most developers use AI tools doesn’t.

This section establishes the conceptual foundation: the evolution of programming abstraction, the limitations of prompt-based workflows, and the architectural inversion that makes specification-driven development possible.

The Fifth Generation

Programming has always been about abstraction. Each generation moves further from the machine and closer to human intent.

First came machine code—raw binary instructions for the processor. Then assembly language gave those instructions human-readable mnemonics. High-level languages like FORTRAN and COBOL abstracted away the registers and memory addresses. Object-oriented programming abstracted away the procedures. Each step let programmers express more with less, trading direct control for leverage.

We’re now entering the fifth generation. The abstraction is no longer syntax or structure—it’s intent itself.

The Abstraction Ladder

Consider what happened at each level:

Machine code required you to think like a processor. Every operation explicit, every memory address managed by hand. A simple loop might take dozens of instructions.

Assembly gave you names. MOV, ADD, JMP. Still one-to-one with machine operations, but readable. You could finally share code with other humans.

High-level languages gave you constructs. Loops, functions, variables with types. The compiler handled the translation. You stopped thinking about registers.

Object-oriented and functional paradigms gave you composition. Classes, modules, interfaces. You stopped thinking about memory layout and started thinking about relationships.

Each transition felt like a loss to some programmers. Assembly programmers distrusted compilers. C programmers distrusted garbage collection. The pattern repeats: what feels like giving up control is actually gaining leverage.

The Fifth Generation Shift

The fifth generation abstracts away the code itself.

This sounds radical, but it follows the same pattern. You describe what you want—the specification—and the system generates the implementation. The specification becomes the artifact you maintain. The code becomes ephemeral, regenerated as needed.

This isn’t new in concept. Code generation has existed for decades. What’s new is the capability. Large language models can generate working code from natural language descriptions, handle ambiguity, and adapt to context in ways that templated code generators never could.

But capability without methodology is chaos. That’s where most developers are stuck right now.

The Current Mess

Watch a developer using an AI coding assistant today. They type a prompt, get some code, paste it in, run it, see an error, type another prompt, get more code, paste that in. It works, sort of. They move on.

This is vibe coding. It produces working software through iteration and luck. It doesn’t scale. It doesn’t transfer. It leaves no trail of intent.

The problem isn’t the AI. The problem is that we’re using a fifth-generation tool with second-generation thinking. We’re still writing code—we’re just dictating it to a machine that types faster than we do.

Specification as Artifact

The shift requires inverting how we think about what we produce.

In traditional development, code is the artifact. Requirements, designs, and documentation exist to support the code. When they drift apart, we update the documents (or more often, we don’t).

In specification-driven development, the specification is the artifact. Code exists to implement the specification. When they drift apart, we fix the code or refine the specification—but the specification remains the source of truth.

This changes everything: what you version control, what you review, what you test against, how you communicate with your team.

The code still matters. It still runs. It still has bugs. But it’s no longer what you maintain. You maintain the specification, and the code follows.

What This Means for You

If you’re a developer who’s been using AI tools and feeling like something isn’t quite working, you’re right. You’ve been given a fifth-generation tool and told to use it like an autocomplete.

The rest of this book will show you how to actually use it.

You’ll learn to write specifications that generate correct code on the first try—or at least, code that fails in predictable, fixable ways. You’ll learn to structure projects so that specifications and code stay synchronized. You’ll learn to validate generated code against the specification that produced it.

Most importantly, you’ll learn to think about code as a side effect of specification, not the other way around.

This is the fifth generation. The abstraction is intent. Let’s learn to use it.

EPUB/media/front-cover.png
Al Native Software Engineering
Kevin Ryan

Move beyond ad-hoc prompting to structured workflows
where the spec is the source of truth and code follows.

